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CONSTITUTIVE RELATIONS FOR A VISCOELASTIC BODY

UNDER CRYSTALLIZATION CONDITIONS

UDC 539.376T. G. Zav’yalova and N. A. Trufanov

The problem of describing the thermomechanical behavior of viscoelastic polymer materials under
conditions of their post-production cooling accompanied by crystallization is considered. A variant
for constructing phenomenological constitutive relations, which continuously reflect the relation be-
tween the stress and strain tensors in a wide range of temperature variation, is suggested. The
relations are based on representation of the medium in the form of a composition of a melted ma-
terial and a completely crystallized material with allowance for the history of permanent incipience
and deformation of the new phase in the interval of phase-transformation temperatures. To deter-
mine the material functions and constants, experiments are planned on specimens at temperatures
corresponding to particular phase states. Results of experiments and numerical analysis of the fields
of displacements generated by solidification of a circular polyethylene plate are given.
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The development of mathematical models of the mechanical behavior of viscoelastic bodies under phase-
transition conditions is of significant interest [1–3] for describing the evolution of the stress–strain state of articles
made of polymeric materials with a tendency to crystallization during their manufacturing. It is known that some
polymeric materials (polyethylene, Caprolon, etc.), being in an amorphous state when melted, can form crystalline
structures during their cooling, the relative fraction of these structures in the material volume (relative degree of
crystallization) depending on the nature of the material and on the cooling mode [4]. The crystallization process
in polymers normally proceeds without an explicit crystallization front and, by virtue of low thermal conductivity,
is accompanied by substantial temperature and, as a consequence, strain inhomogeneity. As a result, technological
and residual stresses are formed in the material, which can lead to origination of microdefects, deterioration of
exploitation properties of articles, and even to failure of the latter already at the stage of manufacturing. Models
of the behavior of such media should include constitutive relations that offer a unified description for the relation
of stress and strain tensors in a wide range of temperatures, including the range of phase transitions.

1. Let us consider derivation of the constitutive relation for a crystallizing viscoelastic medium in the case
of a uniaxial stress state with low strains within the framework of the following hypotheses and postulates:

— the crystallizing polymer system at each time and at each point of the system is considered as a mixture of
the polymer melt and a completely crystallized product, whose relative fraction in the total volume is characterized
by the degree of crystallization α(t);

— the material remains macroisotropic in the course of its transformation;
— the behavior of the polymer melt is described by a relation of linear viscoelasticity; with allowance for

the small characteristic relaxation time of the polymer melt, as compared to the relaxation time of the crystalline
phase and the time of the crystallization process, the relaxation function for the amorphous phase is assumed to be
a constant equal to the long-term modulus of the elastic amorphous phase;
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— the elementary particle of the incipient crystalline phase is characterized by a certain initial stress equal
to the stress in the polymer melt at the moment of crystallization;

— the stresses in the crystallizing polymer are determined in accordance with the principle of superposition
of stresses in the linear viscoelasticity theory.

Let a fraction of the polymer characterized by the increment of the degree of crystallization ∆α1

= ∆α(t1) be crystallized at the time t1 and the strain increment be ∆ε(t1). Respective strain increments
∆ε(t2),∆ε(t3), . . . ,∆ε(tk) occur at subsequent times t2, t3, . . . , tk. In accordance with Boltzmann’s superposition
principle [5], the stresses arising in the considered part of the viscoelastic polymer at the time tk > t1 are a sum of
stresses arising in this area at the times t1, t2, . . . , tk owing to the corresponding strain increments:

σ1(tk) = ∆α1[R(tk − t1, t1 − t1) ∆ε(t1) +R(tk − t1, t2 − t1) ∆ε(t2) + . . . +R(tk − t1, tk − t1) ∆ε(tk)] + σ01.

Here R(t, τ) is a function of material relaxation characterizing its mechanical properties, σ01 = ∆α1Ea,∞ε(t0) is the
initial stress for the crystalline phase of the polymer crystallized at the time t1, and Ea,∞ is the long-term modulus
of elasticity of the polymer in the amorphous state.

The following expression for the stress at the time tk is valid for the polymer fraction crystallized at the
time t2:

σ2(tk) = ∆α2[R(tk − t2, t2 − t2) ∆ε(t2) +R(tk − t2, t3 − t2) ∆ε(t3) + . . . +R(tk − t2, tk − t2) ∆ε(tk)] + σ02.

Here σ02 is the initial stress for the crystalline phase of the polymer crystallized at the time t2, σ02 =
∆α2Ea,∞(ε(t0) + ∆ε(t1)).

We consider the kth discrete step in terms of the transformation ∆αk, corresponding to the time tk. By
virtue of similar considerations, we write

σk(tk) = ∆αk[R(tk − tk, tk − tk) ∆ε(tk)] + σ0k,

where σ0k = ∆αkEa,∞[ε(t0) + ∆ε(t1) + . . .+ ∆ε(tk−1)].
The stresses in the crystalline phase at the time t > tk can be obtained as a sum of stresses arising there

at the times t1, t2, . . . , tk. Passing to the limit in terms of strains and degree of crystallization in the resultant
expression, we obtain the expression for the stress of the crystalline phase:

σcr(t) =

α(t)∫
0

( t∫
ω

R(t− ω, τ − ω) dε(τ)
)
dα(ω) + σ01 + σ02 + . . .+ σ0k.

Assuming that the strains of the crystalline phase and melt are identical, we obtain the stresses in the system
as the sum of stresses arising in the crystalline phase and in the melt. Taking into account that σ01 +σ02 + . . .+σ0k

= Ea,∞

α(t)∫
0

ε(τ) dα(τ), we can write the following relation for the uniaxial stress state:

σ(t) = Ea,∞(1− α(t))ε(t) +

α(t)∫
0

( t∫
ω

R(t− ω, τ − ω) dε(τ)
)
dα(ω) + Ea,∞

α(t)∫
0

ε(τ) dα(τ).

With allowance for temperature strains and structural shrinkage, which accompanies the phase transition,
the stress in the system has the form

σ(t) = Ea,∞[ε(t)− εT,a(t)](1− α(t))

+

α(t)∫
0

[ t∫
ω

R(t− ω, τ − ω) d(ε(τ)− εT,cr(τ) + kh(τ − ω))
]
dα(ω) + Ea,∞

α(t)∫
0

(ε(τ)− εT,a(τ)) dα(τ), (1)

where εT,a and εT,cr are the temperature strains for the amorphous and crystalline phases, respectively, k is the
coefficient of structural shrinkage, and h is the Heaviside function, which reflects the fact that the strain of structural
shrinkage of a polymer particle crystallized at the time ω starts to contribute to the total strain only after the moment
of particle origination.
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If we assume that there is no relaxation in the crystalline phase and ignore the initial stresses in the crystalline
phase of the crystallizing system, Eq. (1) is reduced to a particular case, which is the constitutive relation suggested
earlier in [6]:

σ(t) = Ea,∞(1− α(t))ε̄a(t) + Ecr

α(t)∫
0

[(ε̄cr(t)− ε̄cr(ω)) + k] dα(ω),

ε̄a(t) = ε(t)− εT,a(t), ε̄cr(t) = ε(t)− εT,cr(t).

This relation can be conventionally called the model of a crystallizing medium in the “elastic approximation.” Here,
Ecr is the elasticity modulus of the crystalline phase.

2. Let us illustrate the constitutive relation (1) by the example of solving a model problem on stress evolution
of a clamped rod made of a polymeric material within the framework of the uniaxial stress state. Because of changes
in temperature with time, the material consecutively passes the stages of melting, solidification, completely solidified
product, and melting again. During a closed temperature cycle, the rod is first cooled with a constant rate uniformly
over its entire length from a certain initial temperature, which is higher than the melting point of the material. When
the temperature decreases below the melting point, the process of crystallization begins. The rod continues to be
cooled to a temperature at which the crystallization process is completed, and the rod is retained at this temperature
for a certain time. After that, the rod is uniformly heated with a constant rate to the initial temperature; during
this process, the rod material is completely transformed from the crystalline to the amorphous phase.

For this example, the dependences of the relaxation time and transformation degree on time were chosen in
the form

R(t) = Ecr[1− (1− exp (−t/B))(1− Ecr,∞/Ecr)]; (2)

α(t) = (1 + sin (t/A− π/2))/2, t ∈ [0, tcr], (3)

where Ecr,∞ is the long-term modulus of elasticity in the crystalline state, the time t = 0 in Eq. (3) corresponds to
the beginning of the crystallization process, A = tcr/π, where tcr is the time of the crystallization process and the
parameter A allows variation of the crystallization rate (to take into account the influence of the rate of variation
of the material temperature on the rate of crystallization), and B = 5 sec. The initial temperature of the rod is
T0 = 450 K, the melting point is Tm = 415 K, and the temperature to which the polymer is cooled is T ∗ = 340 K.
The form of dependences (2) and (3) and the parameters in Eqs. (1)–(3) correspond to low-pressure polyethylene
(LPPE). Their particular values are given below.

Figure 1 shows the time evolution of stresses arising in the rod for two cases with different rates of temperature
variation in the rod and different times of crystallization and melting. In addition, the stresses were calculated with
the use of two types of constitutive relations: with and without allowance for viscoelastic properties of the crystalline
phase. The segment AB of the curves corresponds to the stage of material melting (α = 0 and ∆T < 0), and the
segment BCi (i = 1, 2) reflects the process of stress formation at the stage of crystallization (∆α > 0 and ∆T < 0).
When the crystallization process is completed, the rod temperature is fixed, and the segments CiDi of the curves
correspond to retaining of the completely crystallized rod at a constant temperature (T = 340 K and α = 1). At
the segment DiEi, the rod is heated to the melting point (α = 1 and ∆T > 0); after that, being further heated
with a constant rate, the rod melts, which is described by the segment EiGi (∆α < 0 and ∆T > 0). At the last
stage, the rod in the completely melted state reaches the initial temperature again, which is shown by the segment
GiK (T = T0 and α = 0).

It is seen from Fig. 1 that the level of stresses calculated with allowance for viscoelastic properties of the
crystalline phase is substantially lower already at the stage of crystalline-phase formation than the level of stresses
obtained under the assumption of the elastic behavior of the polymer in the crystalline state. At a constant
temperature, clearly expressed relaxation of stresses occurs in a completely crystallized material. In addition, in
the case of a twofold decrease in the crystallization rate and temperature-variation rate in the rod, the difference
between the maximum values of stresses calculated in both models becomes significantly greater; at lower rates,
the crystalline phase of the polymer has enough time to reach a state corresponding to the long-term modulus of
elasticity.
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Fig. 1. Time evolution of stresses in the rod: (a) the rate of temperature variation is 0.5 K/sec
and the crystallization time is 150 sec; (b) the rate of temperature variation is 0.25 K/sec and the
crystallization time is 300 sec; curves 1 and 2 refer to the calculations without and with allowance
for viscoelastic properties of the crystalline phase, respectively.

Thus, the example considered shows that allowance for viscoelastic properties of the crystalline phase of
the polymer under certain rates of the processes in the polymer material can lead to significant quantitative and
qualitative differences in the evolution of the stress state from the features obtained with the use of elastic models.

3. It should be noted that, physically, relation (1) at each time instant describes the stresses in the crys-
tallizing system in the form of a superposition of stresses in an infinite number of elements connected in series,
which obey the laws of the behavior of elasticity and viscoelasticity. Hence, as in the theory of linear elasticity and
viscoelasticity [5, 7], we can write physical relations for a complicated stress state, which results from the transfer
of the form of the stress–strain relation in the uniaxial case to the form of the relation of spherical and deviatoric
components of the stress and strain tensors. Such a generalization of relations (1) for an isotropic polymer yields
the expressions

σ̂(t)− σ(t)Ê =

α(t)∫
0

[ t∫
ω

R1(t− ω, τ − ω) d(ε̂(τ)− θ(τ)Ê/3)
]
dα(ω); (4)

σ(t) = Ba,∞(θ(t)− θT,a(t))(1− α(t))

+

α(t)∫
0

[ t∫
ω

R2(t− ω, τ − ω) d(θ(τ)− θT,cr(τ)) + 3kR2(t− ω, 0)
]
dα(ω) +Ba,∞

α(t)∫
0

(θ(τ)− θT,a(τ)) dα(τ), (5)

where σ̂ and ε̂ are the stress and strain tensors, respectively, R1(t, τ) and R2(t, τ) are independent functions of
shear and volume relaxation of the crystalline phase, θ = εkk is the volume strain, Ê is a unit tensor, σ = σkk/3 is
the mean normal stress, Ba,∞ is the long-term volume modulus of the amorphous phase, and θT,a and θT,cr are the
temperature volume strains of the polymer in the amorphous and crystalline states, respectively.

Mechanical properties of polymers are temperature-dependent. If the material in the state corresponding
to the equilibrium degree of crystallization displays a thermorheologically simple behavior [5, 7] in tests for shear
and volume relaxation (or creep), it is possible to use the principle of the temperature–time analogy with two
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Fig. 2. Layout of the experimental setup: 1) LPPE plate; 2) bottom;
3) cover; 4) steel glass.

independent functions of the temperature–time shift (for the function of volume relaxation and for the function of
shear relaxation).

An important advantage of this approach is the possibility of describing the material behavior under phase-
transition conditions on the basis of physical equations containing material functions and constants determined
from well-established experiments with specimens of the material in a stable state outside the phase and relaxation
transitions: in a completely crystallized or a completely amorphous state. To use the physical relations obtained,
one has to know the dependences R1(t, τ), R2(t, τ), α(t), and T (t), constants Ba,∞ and k, and coefficients of
temperature expansion of the polymer in the viscous-flow and crystalline states (aa and acr, respectively).

With the use of the approach described in [8], we performed a thermodynamic analysis of the physical
relations derived. It was found that it is necessary to take into account the initial stresses for the crystalline phase
of the polymer in physical relations; otherwise, the crystallizing system becomes dissipative even in the case of the
elastic approximation of mechanical properties of the polymer.

4. To verify the reliability of the physical relations (4) and (5), we compared the results of the numerical
solution and experimental data on determining the fields of displacements of a circular plate made of low-pressure
polyethylene at the moment the crystallization process was completed.

Polyethylene plates 6.14 and 5.65 mm thick and 90 mm in diameter were manufactured under laboratory
conditions. In the course of the experiment, the plate was located into a setup (Fig. 2), which was then heated to
a temperature T ≈ 170–180◦C. The process of polymer melting was completed. After that, the setup was removed
from the furnace, and the plate was cooled, which was accompanied by polyethylene crystallization. Two cooling
modes were used.

1. The initial temperature was T0 = 170◦C. When the setup was removed from the furnace, the plate
6.14 mm thick together with cover was placed for 5 sec into water whose temperature was 16◦C, then into air for
5 sec, and then the setup was cooled without the cover under a water stream with a temperature of 16◦C.

2. The initial temperature was T0 = 180◦C. The initial stage of cooling of the plate 5.65 mm thick included
cooling of the setup with the cover in water whose temperature was 20◦C during 10 sec, then by spraying during 5 sec
(temperature of water 20◦C), and then the setup was cooled without the cover under a water shower (temperature
of water 16◦C).

The nonuniformity of the temperature and conversion fields over the plate thickness, formed in the course of
cooling, is responsible for generation of technological and residual stresses and for plate deformation. By the moment
the crystallization process is completed, the plate becomes convex toward the cooling surface. Plate bending was
determined by a thickness meter.
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The numerical analysis of evolution of the stress–strain state (SSS) of the plate was based on the boundary-
value problem of thermomechanics for a crystallizing polymer divided into two independent problems: thermokinetic
and boundary-value problems, which were solved consecutively (the effect of the SSS on the crystallization process
was ignored). The solution was performed in a cylindrical coordinate system.

Formulation of the thermokinetic problems includes [4]:
— unsteady heat-conduction equation with variable coefficients

c(T )ρ(T )
∂T

∂t
=

1
r

∂

∂r

(
rλ(T )

∂T

∂r

)
+

∂

∂z

(
λ(T )

∂T

∂z

)
+ ρ(T )Q̇; (6)

— equation of kinetics of nonisothermal crystallization
dα

dt
= K1 exp

(
− U1

RT
− ψ

Tp − T

)
(1 +A0α)(αp(T )− α), (7)

where c is the specific heat, ρ is the density, λ is the thermal conductivity of the material, Q̇ = Qkα̇ is the heat-
release rate in the course of the crystallization reaction, Qk is the thermal effect of the crystallization reaction, α is
the degree of material crystallization varying in the course of the reaction from zero to a certain time-dependent
limiting value αeq (equilibrium degree of crystallization), R is the universal gas constant, Tp is the melting point,
K1, U1, ψ, and A0 are macrokinetic constants determined experimentally, and r and z are the radial and axial
coordinates, respectively;

— boundary and initial conditions

t = 0: T = T0, α = 0, z = −h∗: λ
∂T

∂z
= H(Ts − T ),

r = R∗:
∂T

∂r
= 0, z = h∗:

∂T

∂z
= 0,

where T0 is the initial temperature, H is the heat-transfer coefficient, Ts is the temperature of the cooling medium,
and R∗ and 2h∗ are the plate radius and thickness.

The results of solving the thermokinetic problem are the space–time fields of distributions of temperature
and degree of crystallization, which are used to solve the problem of determining the SSS of the article. Formulation
of the boundary-value quasi-static problem of finding the SSS of a solidifying system includes:

— the physical relations (4) and (5) in the form

σrr =

α(t)∫
0

[ t∫
ω

R1(t− ω, τ − ω) d(εrr(τ)− θ(τ)/3)
]
dα(ω) +Ba,∞(θ(t)− 3aa(T (t)− T0))(1− α(t))

+Bcr

α(t)∫
0

[θ(t)− θ(ω)− 3acr(T (t)− T (ω)) + 3k] dα(ω) +Ba,∞

α(t)∫
0

(θ(τ)− 3aa(T (τ)− T0)) dα(τ),

σϕϕ =

α(t)∫
0

[ t∫
ω

R1(t− ω, τ − ω) d(εϕϕ(τ)− θ(τ)/3)
]
dα(ω) +Ba,∞(θ(t)− 3aa(T (t)− T0))(1− α(t))

+Bcr

α(t)∫
0

[θ(t)− θ(ω)− 3acr(T (t)− T (ω)) + 3k] dα(ω) +Ba,∞

α(t)∫
0

(θ(τ)− 3aa(T (τ)− T0)) dα(τ),

σzz =

α(t)∫
0

[ t∫
ω

R1(t− ω, τ − ω) d(εzz(τ)− θ(τ)/3)
]
dα(ω) +Ba,∞(θ(t)− 3aa(T (t)− T0))(1− α(t))

+Bcr

α(t)∫
0

[θ(t)− θ(ω)− 3acr(T (t)− T (ω)) + 3k] dα(ω) +Ba,∞

α(t)∫
0

(θ(τ)− 3aa(T (τ)− T0)) dα(τ),
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Fig. 3. Axial displacements of the plate points on the cooling surface versus the radius by the
moment the crystallization process is completed: curves 1 and 2 refer to the calculations with and
without allowance for viscoelastic properties of the crystalline phase of polyethylene; the points
show the experimental data.

τrz =

α(t)∫
0

[ t∫
ω

R1(t− ω, τ − ω) dεrz(τ)
]
dα(ω),

where we used R2(t, τ) = Bcr (because we failed to find information about the function of volume relaxation for
LPPE), Bcr is the volume modulus of the crystalline phase;

— equilibrium equations
∂σrr

∂r
+
∂τrz

∂z
+
σrr − σϕϕ

r
= 0,

∂τrz

∂r
+
∂σzz

∂z
+
τrz

r
= 0; (8)

— Cauchy relations

εrr =
∂ur

∂r
, εϕϕ =

ur

r
, εzz =

∂uz

∂z
, εrz =

1
2

(∂ur

∂z
+
∂uz

∂r

)
; (9)

— boundary conditions depending on the stage of the process considered

r = R∗: ur = uz = 0, r = 0: ur = 0; (10)

r = R∗: ur = uz = 0, r = 0: ur = 0, z = h∗: uz = 0, (11)

where ur and uz are the components of the displacement vector in a cylindrical coordinate system. The constraints
on displacements (11) correspond to the initial stage of crystallization, when the plate tends to become convex
toward the bottom, which prevents its deformation.

The development of the algorithm of numerical implementation of problem (4)–(11) was considered in [9].
Conditions of convective heat transfer with heat-transfer coefficients different for individual stages of cooling were
set on the cooling surface in the numerical solution of the problem on determining the fields of temperature
and degree of crystallization in the plate. The parameters were H1 = 450 W/(m2·K), H2 = 100 W/(m2 ·K),
and H3 = 800 W/(m2 ·K) for the first cooling mode, and H1 = 450 W/(m2 ·K), H2 = 300 W/(m2 ·K), and
H3 = 550 W/(m2 ·K) for the second cooling mode. The following values of thermophysical and mechanical pa-
rameters of LPPE were used: K1 = 2.33 · 104 sec−1, U1 = 30, 200 J/mole, Ψ = 182 K, Tm = 415 K, A0 = 82,
Qk = 164,000 J/kg, and k = 0.1 [4, 10]; Ea,∞ = 1.25 · 107 Pa, νa = 0.49, aa = 2.8 · 10−5 K−1, Ecr = 1.6 · 108 Pa,
νcr = 0.35, and acr = 0.9 · 10−5 K−1 [11–15]. The dependence of mechanical properties of polyethylene on tem-
perature was taken into account by using the principle of the temperature–time analogy with the data of [13].
The temperature dependences of the heat capacity, thermal conductivity, density, and equilibrium degree of LPPE
crystallization were borrowed from [4, 10–12].

Figure 3 shows the axial displacements uz of the plate points lying on the cooling surface versus the radius
for two cooling modes, which were obtained experimentally (points), with the use of the physical relations (4) and
(5) proposed in the present work (curves 1), and with the use of relations that imply the elastic behavior of the
polymer in the crystallized state (curves 2).
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As is seen from Fig. 3, the experimental data are in good agreement with the numerical results obtained
with the use of the physical relations that take into account viscoelastic properties of the crystalline phase of the
polymer: for points near the axis of symmetry, the difference in results is about 20%. The neglect of relaxation
properties leads to significant differences with the experiment (curves 2).
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